Category: Paper
Paper Review
[CVPR 2017]Residual Attention Network for Image Classification
Abstract end-to-end로 학습할 수 있도록 attention 모듈을 쌓아서 Residual Attention Network를 만든다.각 모듈을 통해 attention-aware feature를 생성한다. Introduction Residual Attention Network는 CNN 네트워크로 깊은 구조에…
[CVPR 2021] CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching
이번 리뷰 논문은 제목대로 stereo matching에 관한 방법론입니다. 해당 방법론은 서로 다른 데이터 셋 차이에도 강인하게 성능을 평가하는 대회 ECCV 2020 workshop “Robust Vision Challenge…
[CVPR2017] Semi-Supervised Deep Learning for Monocular Depth Map Prediction
이번 CVPR2021 workshop 에서 열린 Monocular depth estimation 대회 중 Semi supervised 부문에서 1등을 기록했습니 다. 굉장히 영광스러운 결과이며 언제 또 이런 결과를 얻을 수…
[CVPR2021] On Semantic Similarity in Video Retrieval
해당 논문은 Semantic Similarity의 범위에 대해 논하는 논문이다. 처음 논문을 선택한 이유는 similarity의 범위에 대해 분석하고 있는 내용인지 궁금하여 선택하였다. 해당 논문에서 다루는 video retrieval은…
[CVPR 2021] End-to-End Object Detection with Fully Convolutional Network
이번에 리뷰할 논문은 CVPR 2021 OPEN ACCESS 페이퍼이며 object detectio관련 논문입니다. Object detection에서 주로사용되는 NMS 없이 네트워크를 구성하였고, 뭔가 general하게 사용될 수 있을 전략일거 같아서…
[CVPR2021] HistoGAN : Controlling Colors of GAN-Generated and Real Image via Color Histograms
오늘 리뷰로 작성할 논문은 CVPR2021에 통과된 HistoGAN입니다. 제목만 보셔도 알 수 있다시피, Color 히스토그램을 이용해 만들고자 하는 영상의 색상을 조절하는 논문으로 보입니다. Introduction 기존의 Color…
[CVPR2021] Delving into Localization Errors for Monocular 3D Object Detection
아카이브 : https://arxiv.org/pdf/2103.16237.pdf 깃허브 : https://github.com/xinzhuma/monodle Introduction 해당 논문은 단일 이미지 기반으로 3D Object Detection을 수행할때, 성능향상을 저지하는 가장 큰 요인중 하나인 ‘Localization error’에 대해…
[arXiv2021] Are Convolutional Neural Networks or Transformers more like human vision? – [1]
읽을 논문을 찾아보던 와중 독특한 이름의 논문이 눈에 들어와 읽고 리뷰하게 되었습니다. 이름은 “Are Convolutional Neural Networks or Transformers more like human vision?” 으로 현재…
A Generalizable Approach to Learning Optimizers
[논문 Link]논문에서 정의한 문제:deep neural network optimization을 자동적으로 하지 못하는 이유는 무엇일까? 대부분의 학습이 학습의 상황(훈련된 모델 등)에 의존적이기 때문이다. 해당 연구는 일반화에 초점을 맞춘…
[NeurIPS 2020] Wasserstein Distances for Stereo Disparity Estimation
이번 리뷰 논문은 end-to-end의 Stereo Depth estimation에 대한 방법론이며, NeurlPS에서 Spotlite를 받은 페이퍼에 해당합니다. 매칭에 대한 모호함(e.g. 물체의 경계)을 해결하기 위해 offset 모듈과 Wasserstein Distances…
안녕하세요 인하님 리뷰 읽어주셔서 감사합니다. 첫번째 질문에 대한 답으로는 해당 기법은 물체의 trajectory를 dense reward로 정의해서 강화학습을 통해서 manipulator가 trajectory를…